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Abstract

We present a quadratic finite element approach to discretize the Kohn–Sham equations on structured non-uniform
meshes. A multigrid FAC preconditioner is proposed to iteratively solve the equations by an accelerated steepest descent
scheme. The method was implemented using SAMRAI, a parallel software infrastructure for general AMR applications.
Examples of applications to small nanoclusters calculations are presented.
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1. Introduction

Density functional theory (DFT) is a quantum model that has proved very successful in real applications,
ranging from optical properties of nanostructures to phase diagrams of various materials. It introduces an
independent particles description of the electronic structure of molecules or materials which is much simpler
to treat than the original many-body Schroedinger equations [1,2]. Simulating realistic physical systems by
DFT however is still computationally very demanding. More efficient, scalable numerical algorithms that
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reduce computer time and enable larger simulations are always in demand by chemists, physicists and biolo-
gists who are studying phenomenon at the molecular level.

The finite element (FE) method (see e.g. [3]), a popular solution technique for partial differential equa-
tions, has only recently begun to be used for solving the Kohn–Sham (KS) equations of density functional
theory for realistic 3D applications [4–8]. Traditionally, pseudo-spectral approaches have been the most
popular under the denomination plane waves (PW) method. The regular use of periodic boundary condi-
tions with simple geometries explains this preference. However, as computer power increases and interest
in studying larger and more diverse systems grows, discretzations using finite differences or finite elements,
often referred to as real-space approaches, have recently attracted more interest [9]. The first motivation for
real-space approaches is that they are easier to parallelize than pseudo-spectral approaches [10]. Another
motivation for real-space discretizations is that algorithm complexity may be reduced from O(N3) to
O(N) by representing the electronic structure using a set of N non-orthogonal strictly localized orbitals
[5,11–13]. In many cases, one can find a representation that spans a subspace very close to the invariant
subspace associated with the occupied electronic states, usually described in term of eigenfunctions. In this
paper, we focus on another motivation which is that we may refine the mesh locally to reduce the number of
degrees of freedom needed to describe electronic wave functions in regions where they are very smooth. The
use of a locally-refined structured mesh, when possible, leads to numerically more efficient algorithms. We
hope that all aforementioned advantages of real-space methods can be realized leading to very efficient
algorithms.

Various approaches for 3D DFT calculations using local mesh refinement and finite differences [14–16] and
finite elements [17,6,18] have been explored. When using local mesh refinement, one faces the difficulty of
building an efficient parallel implementation. A useful DFT code must be parallel to be competitive with
highly optimized, parallel PW codes. Fortunately, one can rely on existing parallel infrastructure to facilitate
the implementation [18]. We have developed an electronic structure code based on SAMRAI, an object-ori-
ented, parallel software infrastructure for general AMR applications on structured grids [19] developed at
Lawrence Livermore National Laboratory.

In the present work, we use the pseudopotential approximation which replaces singular atomic potentials
by smoother regular potential functions that include core electron effects. Beside removing singularities, this
approximation also simplifies the problem by removing degrees of freedom associated with the core electrons.
These electrons are considered frozen since their effect on chemical binding can often be neglected. In this
paper, we have chosen applications that require only local pseudopotentials; that is, atomic potentials that
can be represented by simple radial functions.

The discussion in this paper is restricted to parallelepiped domains. This is general enough to treat most
solid state applications where the computational domain has to coincide with a cell invariant under the crystal
structure symmetry. For finite systems surrounded by vacuum, using a parallelepiped domain is also an appro-
priate approach. From a computational point of view, this restriction allows for the use of structured meshes
which facilitates code implementation and improves numerical efficiency, allowing for instance matrix-free
implementations.

In this paper, we propose a hierarchical finite element discretization for DFT calculations. For concreteness
and to simplify the discussion, we present the quadratic finite element case which is also the special case we
have implemented. But the approach can be generalized to higher order finite elements. An essential difference
between our approach and the one proposed by Tsuchida and Tsukada [4] is the hierarchical formulation we
use. This important feature allows to use simplified steepest descent directions vectors and to design a multi-
grid Poisson solver and preconditioner suited to our discretization. We also propose a discrete energy func-
tional consistent with the weak discrete formulation of the KS equations, which ensures a minimum
principle for the solution of the discretized problem. The weak formulation of the Kohn–Sham equations
and their finite element discretization are introduced in Section 2. We then present a finite element approach
for the full non-linear Density Functional Theory problem in Section 3. The solvers for the KS equations and
the Poisson problem on structured adaptive meshes are presented in Section 4. Section 5 describes the imple-
mentation of our algorithm using the tools provided by the SAMRAI library. Finally, in Section 6 we illus-
trate our numerical approach with accuracy and convergence tests on some simple electronic structure
calculations for beryllium clusters.
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2. Kohn–Sham problem and its discretization

2.1. Kohn–Sham equations

We consider a 3D computational parallelepiped domain X. We are interested in solving the weak form of
the Kohn–Sham equations for 2N electrons, that is finding N pairs (k(i), u(i)), kðiÞ 2 R; uðiÞ 2V� f0g, such
that2
2 He
Z
X
ðruðiÞrvþ qðfuðiÞgN

i¼1ÞðxÞvðxÞÞdx ¼ kðiÞ
Z

X
uðiÞv dx ð1Þ
for all v in the admissible space V. Functions in V should satisfy the essential boundary conditions, such as
zero Dirichlet or periodic boundary conditions, be continuous, and have first derivatives with finite energy.
We are usually interested in the N lowest eigenvalues k(i) which can be interpreted as single particle energies
for the electronic ground state. In this paper, we limit the discussion to non-metallic systems, i.e. we assume
that those N eigenvalues are separated from the rest of the spectrum by a finite ‘‘band’’-gap. The Kohn–Sham
potential operator q is nonlinear. In this section, we ignore the difficulty introduced by this nonlinearity by
assuming that q is a fixed scalar field depending on x only, and write q(u)(x) = q(x) Æ u(x). The nonlinearity
will be treated later in Section 3.

Defining the L2(X) scalar product
ðu; vÞ ¼
Z

X
u � vdx;
and the bilinear form
aðu; vÞ ¼
Z

X
rurvþ q � u � v dx:
Eq. (1) can be written as
aðuðiÞ; vÞ ¼ kðiÞðuðiÞ; vÞ; 8v 2V: ð2Þ

We also define
bðu; vÞ ¼
Z

X
rurvdx:
Let Sh �V be a finite element space, h > 0 a discretization parameter. The finite element discretization of Eq.
(2) requires finding the lowest eigenvalues kðiÞh 2 R and corresponding eigenfunction uðiÞh 2 Sh, such that
aðuðiÞh ; vhÞ ¼ kðiÞh ðu
ðiÞ
h ; vhÞ 8vh 2 Sh: ð3Þ
In algebraic notation, Eq. (3) leads to a generalized matrix eigenvalue problem
KuðiÞ ¼ kðiÞh MuðiÞ; ð4Þ

where K and M are the stiffness and mass matrices in the finite element basis. That is
ðKÞij ¼ að/e
i ;/

e
jÞ; ðMÞij ¼ ð/

e
i ;/

e
jÞ;
where /e
i are the individual FE basis functions. M is symmetric positive definite, while K is simply symmetric.

M and K are sparse matrices. The vector u(i) is defined as the vector representation of uðiÞh , i.e. a list of the
expansion coefficients of uðiÞh in the finite element basis. We also define L to be the matrix representation of
b(Æ , Æ) in the finite element basis.

Note that matrices such as M, K, or L, operate on vectors made of the FE coefficients of functions in Sh.
They generate vectors whose components should not be considered as coefficients of a function expansion in
re, we neglect the spin of the electrons and assume each electronic orbital is doubly occupied.
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the FE basis, but dot products of a function with the FE basis functions. For example, the coefficient
ðMvÞi ¼ ð/

e
i ; vhÞ is the scalar product of the FE function vh and the FE basis function /e

i . To distinguish
between these different types of vectors, we denote the vector space of scalar products by elementary FE basis
functions as S�h and we use the superscript * to indicate vectors in S�h. This distinction is important when one
considers linear compositions of various vectors, in iterative algorithms for example.

We are interested in the sum of the N lowest eigenvalue kðiÞh that satisfy Eq. (4). We also need the corre-
sponding invariant subspace UðNÞ ¼ spanfuð1Þ; . . . ; uðNÞg. We will use the matrix notation U = (u(1), . . ., u(N))
to denote a basis fuðiÞgN

i¼1 of the subspace UðNÞ.

2.2. Finite element space for structured AMR

We consider functions that are continuous over the whole domain and can be represented in a polyno-
mial basis within each grid cell. We use the 3D quadratic serendipity brick elements consisting of eight
nodes (cell corners) and 12 edges values (located in the middle of each edge); e.g. see [20]. In this approach,
the polynomial basis is expressed using 20 functions: 1, x, y, z, x2, y2, z2, xy, xz, yz, x2y, xy2, x2z, xz2,
y2z, yz2, xyz, x2yz, xy2z, xyz2. We associate degrees of freedom to the eight nodes and 12 edges of each
brick element. From the polynomial basis, one can build 20 shape functions, each having the value 1 at
one node or edge and the value 0 at all other nodes and edges. In our hierarchical approach, we expand
the solution in a cell in a basis given by the eight trilinear shape functions, each of which is 1 at one node
and 0 at all the other nodes, and completed by the 12 shape functions of the serendipity quadratic basis,
each of which is 1 at one of the edges and 0 at all the nodes and other edges.

In structured adaptive mesh refinement (SAMR), the computational mesh is a hierarchy of levels of vary-
ing spatial mesh resolution. Each level is constructed from structured mesh components and corresponds to
a uniform degree of mesh spacing. The levels are nested so that the coarsest level covers the entire compu-
tational domain X and each successively finer level covers a subdomain within the next coarser level. The
cells on each mesh level are grouped into a collection of logically-rectangular regions called ‘‘patches’’. In
this paper, we consider only fixed spatial mesh refinement, but mesh levels can also change in time as
needed.

We use a refinement ratio of 2 in each coordinate direction between consecutive mesh levels. Thus, in 3D,
a refined cell is divided into eight subcells of equal size (2 · 2 · 2). Instead of using special elements at
coarse/fine interfaces, we allow hanging nodes and edges. Using such a refinement structure, coarse nodes
and edges correspond to fine nodes at a fine–coarse interface (see Fig. 1). Fine edges at the boundary of a
Fig. 1. Nodes and edges at coarse/fine interface in a quadratic FE method. Green edges values are defined by quadratic interpolation from
three fine nodes values in edge direction.
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finer level are ‘‘slave’’ edges; the value of a function at these edge points is defined by quadratic interpola-
tion from three fine nodes values in the edge direction. This is necessary to ensure continuity at the fine–
coarse interface. We also have ‘‘slave’’ nodes at the fine–coarse interface; these are fine nodes which do
not correspond to coarse nodes or edges. No degree of freedom is associated to ‘‘slave’’ edges and nodes.
While still somewhat non-standard, formulations based on such hanging nodes have been used by others,
e.g. see Ref. [21].

One can view a finite element function in Sh as a linear combination of basis functions /e
i . Each basis func-

tion is continuous, has local support, takes the value 1 at exactly one node or edge, is a quadratic polynomial
within each neighboring cell, and has the value 0 outside neighboring cells. No basis function is associated
with a slave node or edge. Instead, to ensure continuity along the fine–coarse interface, basis functions are
built as linear combinations of FE shape functions in neighboring cells, including FE shape functions associ-
ated to slave nodes and edges. Resulting basis functions have a support consisting of 3–8 cells, depending on
whether they are centered on a node or an edge, and whether they are located in the interior of mesh level or at
the interface between a coarse level and a fine level.

2.3. Mass and stiffness matrix assembly

Computing a matrix entry between two basis functions is done by computing a contribution from each cell
to a given matrix element and summing the contributions over all relevant cells. In practice, cells contributions
to the matrix representation of the Laplacian L and to the mass matrix M are computed analytically before-
hand. Evaluating the entries of the stiffness matrix K = L + Q requires a numerical integration for the term
qð/e
i ;/

e
jÞ ¼

Z
X

/e
i ðxÞqðxÞ/

e
jðxÞdx � ðQhÞij ¼ qhð/e

i ;/
e
jÞ ¼

X
k

wk/
e
i ðxkÞqðxkÞ/e

jðxkÞ: ð5Þ
The coefficients wk are the appropriate weights for the numerical quadrature formula used and xk are quad-
rature points within the support of /e

i and /e
j . To note that this integration is not exact, we denote the numer-

ical integration of the bilinear form a(.,.) as ah(.,.).
We denote by ~Sh the finite dimensional vector space of real functions defined by their values at the integra-

tion points. We define the operator P � : ~Sh ! S�h by
ðf �h Þi :¼ ðP �~f hÞi ¼
XNq

k¼1

/e
i ðxkÞ~f hðxkÞwk: ð6Þ
This operator can be represented by an Ne · Nq matrix, where Ne is the size of the finite element basis and Nq

the total number of integration points in X.

3. Nonlinear problem: electronic density and energy functional

As stated earlier, the operator q in the Kohn–Sham equations is actually nonlinear. It explicitly depends on
the electronic density q. This density is a function of u(i), i = 1, . . ., N and is given by the general expression
qðxÞ ¼ 2
XN

i;j¼1

ðM�1Þiju
ðiÞ
h ðxÞu

ðjÞ
h ðxÞ ð7Þ
for the case of N doubly occupied electronic orbitals. The entries of the matrix M are defined by
Mij ¼ ðuðiÞh ; u
ðjÞ
h Þ:
The electronic density defined by (7) is independent of the particular basis U chosen to represent the subspace
UðNÞ. In the particular case of orthonormal functions uðiÞh , M is the identity matrix.

In DFT, the potential operator q is the sum of three contributions:
q ¼ V ion þ V H½q� þ V xc½q�: ð8Þ
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Vion is a function of the atoms present in a simulation, and depends on their positions and species only. It is a
linear operator representing the sum of radial functions (atomic local pseudopotentials) centered at the atomic
positions. For the exchange and correlation potential Vxc, we use the so-called local density approximation
(LDA). In this popular model, V xc½q�ðxÞ ¼ vxc

LDAðqðxÞÞ ¼ dðqðxÞ�xc
LDAðqðxÞÞÞ=dqðxÞ for a given parametrized

function �xc
LDA [22,23].

The Hartree potential VH represents the Coulomb interaction between electrons, which is the electrostatic
field generated by the electronic density q. It can be obtained by solving the Poisson equation
�r2V H ¼ 4pq: ð9Þ
However, to avoid long range effects, we introduce a neutralizing charge qs which cancels out q in the com-
putational domain so that
Z

X
ðqðxÞ þ qsðxÞÞdx ¼ 0: ð10Þ
In practice, we construct qs as a sum of Gaussian charges qa located at each atomic site Ra and which neu-
tralizes each atomic pseudopotential individually,
qaðrÞ ¼ �
Za

ð
ffiffiffi
p
p

ra
cÞ

3
exp � jr� Raj2

ðra
cÞ

2

 !
: ð11Þ
Here, Za is the valence charge of atom a, and ra
c is a parameter chosen appropriately. One then solves the Pois-

son equation
�r2V C ¼ 4pðqþ qsÞ; ð12Þ
with zero Dirichlet or periodic boundary conditions to obtain
q ¼ V ion � V s þ V C½q� þ V xc½q�:

Vs is the Coulomb potential resulting from the charge distribution qs. It is computed analytically by adding the
solutions of the radial Poisson problem associated with each Gaussian charge:
vsðrÞ ¼
XNa

a¼1

�Za

jr� Raj
erf
jr� Raj

ra
c

� �
: ð13Þ
This procedure is standard in electronic structure calculations; e.g., see [24].
The potential q is needed at the numerical integration points to evaluate the stiffness matrix coefficients. It is

straightforward to compute Vion at each integration point by simply evaluating the atomic potentials at these
points. For Vxc, we need q at each integration point. This value is obtained by first evaluating each function
uðiÞh at the integration points and then using Eq. (7).

To obtain the Coulomb potential VC at the integration points, the process is more complicated. We first
solve the Poisson problem (12) discretized using the same Finite Element approximation applied to the KS
equations. We solve the linear system
LvC ¼ f�; ð14Þ

and then we evaluate the FE solution
vC
h ðxÞ ¼

X
i

ðvCÞi/
e
i ðxÞ ð15Þ
at the integration points. The loading vector f* on the right-hand side of Eq. (14) is computed by a quadrature
formula and its entries are defined by
ðf�Þi ¼ 4pðP �ðqþ qsÞÞi ¼ 4p
X

k

/e
i ðxkÞðqþ qsÞðxkÞwk: ð16Þ
Here, the sum is over all the integration points in the support of /e
i .
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We evaluate the KS energy of a FE solution according to the following definition:
EKS
h : ¼ TrðM�1LÞ þ

X
k

�xcðqðxkÞÞqðxkÞwk þ
X

k

ðV ion � V sÞðxkÞqðxkÞwk

þ 1

2

X
k

ðqþ qsÞðxkÞvC
h ðxkÞwk � Eself þ Ediff : ð17Þ
Eself and Ediff are quantities that depend only on the atomic positions and Gaussian neutralizing charges; they
do not depend on the solution of the electronic structure problem [24]. The N · N matrix L is given by
Lij ¼ bðuðiÞh ; u

ðjÞ
h Þ. Since TrðM�1LÞ and q do not depend on the representation U of the invariant subspace

UðNÞ, the functional (17) is independent of the choice for U.
This expression is compatible with the discretized KS equations (3) in the sense that we have the following

minimum principle:

Proposition 1. The finite element approximation of the invariant subspace that minimizes the discretized energy

functional EKS
h (17) admits a basis fuðiÞh g

N
i¼1 which satisfies
ahðuðiÞh ; vhÞ ¼ kðiÞh ðu
ðiÞ
h ; vhÞ; 8vh 2 Sh ð18Þ
for i = 1, . . ., N, and q given by (8).

Proof. We can write EKS
h as
EKS
h ¼ Ekin

h þ Exc
h þ Eion

h þ EC
h � Eself þ Ediff ;
where the various terms are defined by the obvious corresponding terms in Eq. (17). Since EKS
h does not depend

on the particular basis U of the invariant subspace UðNÞ, we can assume without loss of generality that
UTU = I. In that case, M ¼ I and
qðxÞ ¼ 2
XN

i¼1

ðuðiÞh ðxÞÞ
2
:

We then examine the first-order variation of the various terms constituting EKS
h in function of variations of uðiÞh

subject to the orthonormality constraints
ðuðiÞh ; u
ðjÞ
h Þ ¼ dij; i; j ¼ 1; . . . ;N : ð19Þ
For variations duðiÞh of uðiÞh ; i ¼ 1; . . . ;N , we have
dEkin
h ¼ 2

XN

i¼1

b uðiÞh ; duðiÞh

� �
: ð20Þ
We also have
dEion
h ¼

X
k

ðV ion � V sÞðxkÞdqðxkÞwk ¼ 2
XN

i¼1

X
k

ðV ion � V sÞðxkÞuðiÞh ðxkÞduðiÞh ðxkÞwk: ð21Þ
Since by definition, d(q(x)�xc(x)) = vxc(x)dq(x), we have
dExc
h ¼

X
k

vxcðqðxkÞÞdqðxkÞwk ¼ 2
XN

i¼1

X
k

vxcðqðxkÞÞuðiÞh ðxkÞduðiÞh ðxkÞwk: ð22Þ
From (14)–(16), vC
h ¼ 4pL�1P �ðqþ qsÞ, and thus
dEC
h ¼ 4p

X
k

ðL�1P �ðqþ qsÞÞðxkÞdqðxkÞwk ¼ 8p
XN

i¼1

X
k

ðL�1P �ðqþ qsÞÞðxkÞuðiÞh duðiÞh ðxkÞwk

¼ 2
XN

i¼1

X
k

vC
h ðxkÞuðiÞh ðxkÞduðiÞh ðxkÞwk: ð23Þ
Eself and Ediff do not depend on U and thus dEself = 0 and dEdiff = 0.
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Introducing the Lagrange multipliers kði;jÞh corresponding to the orthonormality constraints of Eq. (19), we
obtain from Eqs. (20)–(23) and dEKS

h ¼ 0, that the minimum of EKS
h satisfies
ahðuðiÞh ; duðiÞh Þ ¼
XN

j¼1

kði;jÞh ðu
ðjÞ
h ; duðiÞh Þ 8duðiÞh 2 Sh:
Proposition 1 follows directly from the fact that one can choose an orthonormal basis U such that kði;jÞh ¼ 0 for
i 6¼ j. h

This proposition is very important not only to ensure that an iterative solver will be strictly converging from
above toward the minimum energy, but also in the evaluation of the atomic forces. Indeed, the Hellman–Feyn-
man theorem which states that forces can be determined with a single ground state calculation assumes that
the discrete energy at the ground state is at a minimum with respect to any variation in the electronic wave
functions [25].

4. Numerical solvers

4.1. Correction directions

Choosing to represent the invariant subspace we are looking for in a basis of general non-orthogonal func-
tions, as opposed to a basis of eigenfunctions, allows more flexibility in the choice of iterative solvers. We use a
block accelerated preconditioned steepest descent algorithm, independent of the basis U chosen. The basic
ingredient for such an approach is the gradient of the functional (17), which is also the residual of Eq. (4).
In the Ritz representation, and using a block matrix notation, this residual is given by
G ¼ M�1K ~U � ~U ~K; ð24Þ

where ~U is the matrix whose columns are the Ritz vectors, and ~K is a diagonal N · N matrix composed of the
Ritz values. To avoid the inversion of M, we replace the residual (24) by an approximate residual
~G ¼ ~M�1ðK ~U �M ~U ~KÞ ð25Þ

where ~M is a diagonal matrix approximating M. We use
ð ~MÞij ¼ dijðhiÞ3; ð26Þ
where hi is the mesh spacing for the largest cell adjacent to node or edge i. The main purpose of this scaling
matrix is to weight the coefficients according to the mesh refinement level. In our experience, this approxima-
tion works well for the quadratic hierarchical FE approach.

It is easy to see that for a general basis of non-orthogonal functions U, ~G is given by
~G ¼ ~M�1ðKU �MUðM�1KÞÞ

where K and M are N · N matrices given by
Kij ¼ ahðuðiÞh ; u
ðjÞ
h Þ; Mij ¼ ðuðiÞh ; u

ðjÞ
h Þ:
Suppose we have a trial solution U(k). We can iteratively improve U(k) by simple corrections of the form
U ðkþ1Þ ¼ U ðkÞ � gT ~G ð27Þ

where T is a preconditioner and g a real positive coefficient. We propose an appropriate multigrid precondi-
tioner in Section 4.4.

4.2. Anderson extrapolation scheme

As shown in [13], the convergence of a simple block preconditioned steepest descent algorithm with fixed
shift can be improved significantly by using the extrapolation scheme of Anderson [26]. In a non-orthogonal
basis U, we write this extrapolation scheme as
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U ð‘Þ :¼ U ð‘Þ þ
Xm

j¼1

hð‘Þj ðU ð‘�jÞ � U ð‘ÞÞ; ð28Þ
where U(‘) denote the trial solution at step ‘. The coefficients hð‘Þj 2 R are defined as the solution of the linear
system
Xm

j¼1

ðRð‘Þ � Rð‘�iÞ;Rð‘Þ � Rð‘�jÞÞhð‘Þj ¼ ðRð‘Þ � Rð‘�iÞ;Rð‘ÞÞ; i ¼ 1; . . . ;m: ð29Þ
where R(‘) is another iterative sequence associated to the same iterative process, for instance the residuals at
steps ‘,‘ � 1,. . .. The solution of Eq. (29) minimizes the norm of Rð‘Þ, defined as the extrapolation of R(‘)

according to the scheme (28). In practice, we use ð�T ~GÞ as the sequence R(‘) so that the solution of Eq.
(29) minimizes the preconditioned approximate residual of the eigenvalue problem. Finally, the new trial solu-
tion is computed as
U ð‘þ1Þ ¼ U ð‘Þ þ bU ð‘Þ:
We usually choose a scalar value b between 0.5 and 1.
In the space of non-orthogonal functions representing a basis of an N-dimensional subspace V, a natural

scalar product would be
ðV ;W Þ ¼ TrðM�1V TMW Þ ð30Þ
for V and W matrices representing N vectors of finite element coefficients, and ðMÞij ¼ ðu
ðiÞ
h ; u

ðjÞ
h Þ at step ‘. The

scalar product in Eq. (30) is independent of any linear mixing within the basis we choose for U(‘). It can how-
ever become computationally expensive for large problems. To reduce its cost, we drop the matrix M�1 in Eq.
(30). The effect of this change is limited by orthonormalizing the trial solution at regular intervals, say every
20–30 iterations. Numerical tests show no major difference using this approximation.

Anderson’s extrapolation scheme was designed to iteratively solve nonlinear equations [26]. In the case of
an eigenvalue problem like the KS equations, the residual vanishes not only for the lowest eigenvalues we are
interested in, but for any set of eigenvalues. In order to avoid the converging to undesired solutions, some care
is required during the first few steps of the iteration when the trial solution is far from the ground state. In
practice, we avoid problems by starting with a few – between 2 and 5 – iterations without extrapolation. Also,
a ‘‘safety’’ interval is used for hð‘Þj outside of which the extrapolation is turned off – for very large absolute
values – or truncated to be inside the safety interval.

4.3. FAC Poisson solver

To solve for the electrostatic potential in DFT, we need an efficient solver for Eq. (14) discretized on an
AMR grid. In this section, we present a multigrid fast adaptive composite (FAC) [27] Poisson solver appro-
priate for our quadratic FE discretization. An adaptation of this solver will be used in the next section as a
preconditioner for the KS equations iterative solver. Our FAC solver is based on the underlying idea that
one can precondition high-order finite elements with lower-order elements [28]. To do this, we decompose
the quadratic FE space Sh into two complementary subspaces Sh = Vh + Wh, where Wh denotes the trilinear
finite element space and Vh is the subspace of the functions in Sh with nodal interpolant vI = 0. Let IV and IW

be the natural injections from Vh and Wh, respectively, into Sh. In [28], a preconditioner B for the Laplacian
operator Lh is proposed in the form
B :¼ h2IV IT
V þ IW L�1

W IT
W ;
where LW is the Laplacian operator in Wh and h is a typical mesh spacing for a quasi-uniform triangulation.
Based on the same idea of subspace decomposition, we have designed a multigrid FAC V-cycle to solve a

Poisson problem discretized by hierarchical quadratic FE on an locally-refined mesh. The algorithm is as
follows:
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Algorithm 1. FAC Poisson solver for quadratic FE.

(1) Pre-smoothing: carry out m1 red–black Gauss–Seidel sweeps, starting with the edge degrees of freedom,
followed by the node degrees of freedom.

(2) Coarsen residual r by dropping the edge degrees of freedom, leading to a trilinear FE residual equation
Lv = r

(3) Solve iteratively trilinear FE residual equation on composite grid by FAC algorithm

� V-cycles with Jacobi smoothing at each level
� Solve trilinear FE problem on the finest uniform global mesh with standard multigrid solver
(4) Correct quadratic FE trial solution with solution v of trilinear FE residual equation.
(5) Post-smoothing: carry out m2 red–black Gauss–Seidel sweeps, starting with the edge degrees of freedom,

followed by the node degrees of freedom.

The FAC algorithm attempts to iteratively solve the Poisson problem on a locally-refined mesh using a ser-
ies of approximate solves (i.e., smoothing steps) on the uniform mesh levels. When a mesh does not cover the
whole computational domain, boundary conditions are provided by interpolating the current solution from
the next coarser level. To treat the trilinear FE problem on the coarsest mesh level, we employ a linear solver
from the hypre library [29].

4.4. Preconditioning strategy

The utility of a preconditioner to accelerate the iterative solution of the Kohn–Sham equations has long
been recognized in the plane waves community [30]. Typically, an equation for the error dU on the trial invari-
ant subspace representation ~U can be written down as
KdU �MdU ~K ¼ �K ~U þM ~U ~K; ð31Þ
where ~K denotes the diagonal matrix of Ritz values associated with the trial solution ~U – Ritz vectors – of the
eigenvalue problem (4). In the domain of highly oscillatory functions, the Laplacian becomes the dominant
part of the operator K � kM and the left-hand side of Eq. (31) can be approximated by LdU. This is valid
for the high frequency component of dU, precisely the components that limit the length of the step in a simple
steepest descent with a fixed shift algorithm. Thus, in Fourier space, one can design a diagonal preconditioner
to rescale the weights of various frequency components and damp the high frequency components [30]. In real-
space, a similar preconditioner can be designed using the multigrid method (e.g., see [31]). For electronic struc-
ture calculations, this has been described in [24] for a finite differences scheme on a uniform mesh. Here, we
apply a similar idea for a quadratic FE discretization on a locally-refined mesh.

We use the following preconditioner:
T ¼ L̂�1 1

a
L� ~M

� �
� 1

a
I : ð32Þ
The operator L̂�1 is defined by its action on a vector f� 2 S�h. The computation of u ¼ L̂�1f� is accomplished by
applying one V(2, 2) multigrid cycle for the linear system Lu = f* using the FAC scheme described in Section 4.3,
but visiting only the levels with mesh spacing h 6 H. The coarse level problem (h = H) is only approximately
solved by four Jacobi smoothing steps. The parameter a is an approximation of the largest eigenvalue for the
KS operator on the level with mesh spacing H. The parameter H is problem dependent and is chosen heuristi-
cally by numerical experiments. To understand the form of this preconditioner, we examine its effect in the low
and high frequency domain of the FE space. For typical elliptic equations like the Poisson problem, smoothing
sweeps in a multigrid cycle reduce the error in the frequency range associated to each grid level while leaving
lower frequency error components almost unchanged. Thus, for the high frequency components, L̂�1L 	 I
and T 	 �L̂�1 ~M , effectively damping the high frequency components of f*. In the low frequency domain (wave-
length 
H ), L̂�1 	 0 and T becomes a simple steepest descent damping factor a�1 for a mesh spacing H.
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5. Implementation

The algorithms described in this paper are implemented using the tools provided by SAMRAI, an object
oriented parallel software infrastructure for general AMR applications on structured grids [19]. SAMRAI
is an object-oriented C++ software library developed in the Center for Applied Scientific Computing at Law-
rence Livermore National Laboratory. SAMRAI simplifies the implementation of SAMR applications by
providing general tools to build dynamic locally-refined mesh hierarchies and manipulate data, such as arrays
of node, edge, and cell quantities, on those hierarchies. Each mesh level is decomposed into patches that are
distributed among processors using load balancing algorithms also provided by the library. Parallel data man-
agement and communication operations, such as exchanging data between patches on different mesh levels, is
provided by the library. In our FE formulation, we must properly account for nodes and edges around patch
boundaries that belong to more than one patch, including patches on different levels. This occurs, for example,
when computing a vector in S�h. SAMRAI provides tools to sum contributions from all the patches and get a
common node or edge value.

In our KS solver implementation, the stiffness and mass matrices are never stored. Instead the matrix-
vector application is defined using the non-zero matrix elements. In our SAMR approach, all the cells are
identical at each level and matrix elements for the Laplacian of the Mass matrix depend on the refinement level
only. For the potential operator, represented by the matrix Qh, we use Eq. (5) with 27 Gauss quadrature points
per cell (O(h6)).

Typically, we treat slave nodes and edges as additional unknowns and enforce continuity by additional
equations. From a practical point of view, operations on individual patches are carried out uniformly over
all the cells within a patch. Then in a postprocessing step, values at the boundaries are corrected to take into
account the continuity constraints. It means that when computing elements of vectors in S�h, contributions
from a coarser or finer level (e.g., at coarse–fine mesh boundaries) or from neighboring patches at the same
refinement level need to be summed up. In particular, values attributed to slave nodes or edges FE basis func-
tions are used to compute contributions associated to coarse–fine interface basis functions.

6. Numerical results

6.1. Poisson problem

In this section, we apply the FAC algorithm presented in Section 4.3 on a test Poisson problem. This prob-
lem is central in electronic structure calculations to compute the electrostatic interactions (Eq. (14)). In our
algorithm, this is also relevant for the efficiency of the preconditioner. We evaluate the FAC algorithm con-
vergence rate for a quadratic FE discretization of
�Mu ¼ f ; in X ¼ ð�2:5; 2:5Þ � ð�2:5; 2:5Þ � ð�2:5; 2:5Þ
u ¼ 0; on oX:

�
ð33Þ
The right-hand side f is defined by the radial function
gðrÞ ¼ 1

r3
cp

3=2
8e�4r2=r2

c � e�r2=r2
c

� �
with the origin chosen at (0, 0, 0). The integral of the function g over R3 is 0. In an infinite domain (R3), this
problem would admit the exact solution
uðrÞ ¼ 1

4pr
erfð2r=rcÞ � erfðr=rcÞð Þ
which quickly decays to zero. In Table 1, we present convergence results for the FAC algorithm. The uniform
(coarse) mesh problem is approximately solved by hypre asking for a reduction of the residual by a factor 0.1.
The results demonstrate a mesh-independent convergence rate, as well as very similar convergence rates for
locally refined and uniform meshes.



Table 1
Number of FAC-V(2, 2)-cycles needed to reduce the initial error by a factor 10�8 in H1 norm for various uniform meshes and number of
refinement levels

Uniform global mesh No. refinement levels

0 1 2

16 · 16 · 16 12 12 13
32 · 32 · 32 12 12 12
64 · 64 · 64 12 11 12

The mesh is locally refined in 25% of the total volume for the first level and 5% for the second level.
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6.2. Electronic structure calculations

As test applications for DFT calculations, we have chosen Beryllium clusters made of 4 and 17 atoms. Clus-
ters calculations benefit from local mesh refinement since they usually require computational domains much
larger than the cluster itself to simulate the surrounding vacuum. Fig. 2 illustrates a Be4 cluster calculation on
a hierarchy made of 2 grid levels. In the present work, we use the pseudopotential of Beryllium parameterized
by Goedecker et al. [32].

We verified our numerical algorithm by computing the total energy on a domain with periodic boundary
conditions using various mesh spacings and observing convergence towards the energy computed by an inde-
pendent plane waves code. The convergence rate for the energy is O(h4) in the mesh spacing variable h, which
is in agreement with the theoretical convergence rate for the eigenvalues [33]. This is shown in Fig. 3. We also
observe improved efficiency resulting from local mesh refinement. The results obtained with locally-refined
meshes provide the same accuracy as the results obtained on uniform meshes corresponding to refined regions
meshes with a six-fold reduction in number of degrees of freedom.

We tested our multigrid preconditioner on this same application, using various Finite Elements meshes. For
all the calculations presented in Fig. 4, the coarsest grid in the multigrid preconditioner was set to 16 · 16 · 16
cells. We show results using discretizations on three different uniform meshes – 16 · 16 · 16, 32 · 32 · 32, and
Fig. 2. Electronic structure calculation of Be4 cluster on composite mesh. The two structured mesh levels and their decomposition in eight
patches are shown. An isosurface of the electronic density is plotted, surrounding the four Be atoms represented by spheres.
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64 · 64 · 64 – as well as with the first two meshes refined locally in 25% of the volume. The results were
obtained using the block Anderson extrapolation scheme described in Section 4.2, with m = 2, and multigrid
preconditioning. In the iterative process, the non-linear potential is updated at each step, i.e. after every
update of the wave functions, to ensure that the true gradient is always used. The numerical results show a
convergence rate nearly independent of the discretization mesh and the use of local refinement. This demon-
strate the efficiency of the multigrid preconditioner (see Fig. 5).

We measure the strong parallel scaling on a larger problem: a Be cluster made of 17 atoms. The solution to
this problem involves 34 functions that we represent on a mesh of 64 · 64 · 64 cells, refined by a factor 2 in 1/8
of the volume – thus the fine level mesh is also made of 64 · 64 · 64 cells. For this problem, each level is
divided into a number of patches corresponding to the number of processors. The size of the patches varies
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from 16 · 32 · 32 cells on 16 CPUs to 8 · 16 · 16 cells on 128 CPUs. Going from 8 processors to 128, we mea-
sure a parallel efficiency of about 80% which is quite satisfactory for this fixed size problem.3

7. Concluding remarks

In this paper, we have presented a finite element method for density functional theory calculations on struc-
tured locally-refined meshes. We have also described an efficient multilevel solver for this problem. The algo-
rithm complexity essentially scales like O(M · N2), where M is the size of the finite element basis used to
discretize the problem, and N is the number of electronic wave functions to compute (see computation of
~G; M ; K for instance).

As mentioned in the introduction, one interesting aspect of any real-space discretization is the possibility of
representing the electronic structure in terms of spatially localized orbitals to achieve an O(N) computational
complexity. Representing localized orbitals in a finite element basis with adaptive mesh refinement such as pre-
sented above instead of strictly localized functions – such as proposed in Ref. [12], e.g. – is an idea that we are
currently studying.

Finally, to put the method presented above into perspective, we should mention some comparison with the
previous work of one of us (J.-L.F.) using finite differences. For total energy calculations on uniform meshes,
the quadratic finite element method appears to achieve a very similar accuracy and convergence rate as a stan-
dard 4th-order finite difference calculation – measured per degree of freedom. For the same number of degrees
of freedom, our present (not fully optimized) implementation of the finite element approach is somewhat
slower than our finite difference code, but of the same order of magnitude (factor 	2). Obviously, using local
mesh refinement reduces the number of degrees of freedom and easily compensates for that difference in many
cases.
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